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Abstract. The Real Time Specification for Java (RTSJ) is an augmen-
tation of Java for real time applications of various degrees of hardness.
The central features of RTSJ are real time threads; user defined sched-
ulers; asynchronous events, handlers, and control transfers; a priority
inheritance based default scheduler; non-heap memory areas such as im-
mortal and scoped, and non-heap real time threads whose execution is
not impeded by garbage collection. The Robust Software Systems group
at NASA Ames Research Center has Java PathFinder (JPF) under
development, a Java model checker. JPF at its core is a state exploring
JVM which can examine alternative paths in a Java program (e.g., via
backtracking) by trying all nondeterministic choices, including thread
scheduling order. This paper describes our implementation of an RTSJ
profile (subset) in JPF, including requirements, design decisions, and
current implementation status. Two examples are analyzed: jobs on a
multiprogramming operating system, and a complex resource contention
example involving autonomous vehicles crossing an intersection. The util-
ity of JPF in finding logic and timing errors is illustrated, and the re-
maining challenges in supporting all of RTSJ are assessed.

1 Overview

The possibility of using Real Time Specification for Java (RTSJ) [fJEG] soft-
ware on future missions is under consideration at NASA, for all the familiar
reasons: standardized (i.e., platform independent) semantics, a rich and vigorous
marketplace of implementations and tools, and the overall software engineering
advantages of Java as a type safe object-oriented programming language. RTSJ
is not based on any Java core language extensions; rather, all its capabilities
are conveyed by new classes with special semantics, albeit with some refine-
ment of semantics for existing Java classes. This design decision in effect strikes
a bargain: less run time predictability, in exchange for language stability. An
alternative choice might have been to enhance the declarative content of the
language in the interest of stronger compile time program validation, as was
done for example with exceptions in Java.

The dual consequence of this design decision is inadequacy of static analysis
for RTSJ software verification and validation, and a corresponding vital need
for techniques performing dynamic analysis, e.g., model checking. In particular,
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many of the dynamic features of RTSJ are beyond the scope of current worst-case
execution time (WCET) analysis techniques. While RTSJ programmers can in
principle restrict themselves to an RTSJ subset amendable to WCET analysis,
this would significantly reduce the appeal and advantages of using RTSJ over
existing real time languages. We report here on an application of the Java
PathFinder model checker (JPF) [VHB+03, JPFa] to RTSJ programs, focusing
on the latter’s dynamic, time quantified behavior, with the goal of developing
a tool capable of validating RTSJ applications, ideally to the level of mission
deployability. Our approach emphasizes the central issue of temporal correctness
(e.g., threads meeting deadlines) under nondeterministic choices; correctness of
memory usages and asynchronous control flow are reserved for future work. Thus
we are focusing on classical correctness issues in real time software, rather than
issues related to specialized JVM behavior.

Our approach uses discrete event simulation (DES) as a basis for modeling
time. Real time threads are modeled as ordinary Java threads, constrained to
run one at a time, i.e., as coroutine’s. Their interactions, e.g., through CPU
scheduling, are modeled by resource contention techniques familiar to DES pro-
gramming (a summary of DES concepts is given in §3). This permits execution
of programs within our RTSJ profile on any Java implementation.

However, two important capabilities are provided by analyzing (running)
RTSJ programs under JPF: (a) execution cost logging at the bytecode level, and
(b) alternative execution path exploration via nondeterministic choice selection.
Point (a) permits closing an important causality loop impossible on an ordinary
JVM:

thread execution cost → deadline misses → miss events →
event handlers → additional thread execution cost

Analyzing such loops is a critical requirement in the validation and verifica-
tion of complex RTSJ applications, and is well beyond the capability of current
static analyzers.

2 RTSJ Under JPF: Requirements and Objectives

The first question is clearly what does it mean to model check an RTSJ program?
The starting point is to view the RTSJ program as just another Java program
(albeit with a class library with special semantics), and simply execute it using
the model checking vigilance of JPF. This is fine, except that this presumes the
availability of an RTSJ enabled JVM within JPF, which we do not have.

Unlike a simple Java program, in which the notion of time generally plays
an insignificant role, time in RTSJ programs plays a major correctness role, e.g.,
in quantifying real time deadlines. Moreover, an RTSJ program (the embedded
program) must be exercised within an implementation of its environment (the
embedding program). In our view, specifying, constructing and verifying such
environments are often tasks of difficulty equal to or greater than that of the
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embedded system. An example is a flight control system, where a fully accurate
embedding system must model all the dynamics of the aircraft, as is done in a
flight simulator. Hence ensuring that embedding code is correct is as important
(or more so) than ensuring that the embedded code is correct.

We adopted the following goals for model checking RTSJ under JPF:

1. Make no changes to the JPF implementation – clearly, a major software
engineering win if achievable.

2. Implement the embedding code in Java, and model check the entire combined
system – a major validation win if possible.

3. Deal with time through DES modeling – a familiar and well understood
technology.

4. Implement all RTSJ thread interactions (e.g., priority based scheduling with
priority inversion avoidance via priority inheritance) through resource con-
tention techniques traditional to DES.

5. Exploit the run time cost accounting capabilities of JPF to detect deadline
misses by real time threads, and to take appropriate actions, e.g., invoking
overrun handlers in the embedded code.

6. Finally, utilize the path coverage capabilities of JPF to locate bugs involving
nondeterminacy and race conditions, notably nondeterministic choice points
in the embedding code providing greater test coverage.

3 Step 1: RTSJ in a Simulation Environment

The first step in model checking RTSJ is to implement a profile of RTSJ as a set
of conventional Java classes. This we have done to a first level of realism – several
features have yet to be implemented, as discussed in §10. The classes in our im-
plementation include RealtimeThread, PriorityScheduler, AsyncEvent, AsyncEven-
tHandler, OneShotTimer, PeriodicTimer and RelativeTime.

The fundamental concepts of DES (as developed in the Simula system of the
1970’s [BDMN73]) can be summarized as follows:

– Individual processes (the traditional terminology – henceforth we will use
thread) are conceptually concurrent, but in fact execute in an interleaved
fashion as coroutines, as mentioned above.

– A thread may be executing, activated, or passivated.
• An executing thread is the one currently running as a coroutine;
• An activated thread is not executing, but is scheduled to do so in the

future at a time indicated its event notice on the simulation’s event list.
• A passivated thread is neither executing nor active; such threads are typ-

ically waiting for some condition to become true, such as being granted
a resource.

– Scheduling operations on threads include activate (schedule), passivate, and
hold, which is a compound operation comprising activation at a later sched-
uled time time, and passivation.
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– The main thread controls the overall simulation by repeatedly dequeueing
from the event list the event notice with the earliest event time, advancing
the simulation clock to the time in that event notice, and notifying the
associated thread to run – until the event list becomes empty, or a global
shutdown operation is invoked.

Since RealtimeThread’s are constrained to run as coroutines, the JVM sched-
uler has only one scheduling choice possible, and DES event based scheduling is
used in an outboard manner to orchestrate thread interleaving. As mentioned in
§2, all RealtimeThread interactions are achieved by contention for Resource ob-
jects, e.g., a CPU. The upshot is that no changes are necessary to the schedulers
of the underlying JVM or JPF to implement scheduling policies such as prior-
ity inheritance with FIFO ordering within priorities, as required by the default
RTSJ scheduler. Since Java’s real time clock is replaced by the simulation clock,
all RTSJ executions in this implementation are deterministic (repeatable), even
if they use pseudo random methods to draw numbers from probability distri-
butions (assuming fixed seeds) or offer the option of pseudo randomly selecting
orders of events scheduled at identical times.

Fig. 1. RTSJ architecture under JPF

4 Step 2: Combining RTSJ and JPF

Embedded code written in our RTSJ profile, together with its embedding test
code using DES facilities including simulated time, comprise an ordinary Java
program that can be run under any Java implementation (without accurate run
time modeling, however). The next step is to run the combined program under
JPF, with the following additional benefits:

– Nondeterministic state exploration, including all orderings of equal priority
events scheduled for the same instant, and choice points in the embedding
code, and

– Cost accounting, with overrun detection and invocation of appropriate han-
dlers, as described below.
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Our adaptation of JPF is being done in two stages. The first stage exploits
two customization features already available in JPF: its JVM listener interface
[JPFb], and its Model Java Interface (MJI) [JPFc] (both features are utilized in
the Control Program box in Fig. 1).

JVM listener interface: Logging run time (albeit idealized) for Java code un-
der JPF can be done using JPF’s JVM listener interface, which invokes control
program listener methods on various occurrences, including the execution of each
byte code instruction. We use a very simple accounting technique here, whereby
each byte code is assigned a fixed run time in a look up table. By this technique
the execution time (summed byte code costs) from the start to the end of a
RealtimeThread can be accumulated. Similarly, this interface is used to detect
execution path backtracking by the JPF JVM, so that path specific accounting
data structures can be correspondingly backtracked.

Model Java interface: The MJI interface permits Java code executing under
JPF’s specialized JVM to access the underlying JVM for access to native facili-
ties. This turns out to be crucial in arranging that run time cost logging, which
executes outside the JPF JVM, is accessible to the RTSJ application code, which
executes within the JPF JVM. For example, suppose an AsyncEventHandler in-
vocation has a run time in excess of its stipulated limit, as observed through an
MJI native method. This can trigger the invocation of an overrun event handler,
which must execute within the JPF JVM.

The second and more difficult stage of adapting JPF for RTSJ concerns fea-
tures that must be implemented by JVM modifications. These features, which
include non-heap memory areas and non-heap real time threads, as well as asyn-
chronous control transfers, are discussed in §7.1.

5 Scheduling Policies

We now give more details on our control of scheduling by means of resource con-
tention policies. We illustrate our approach by discussion of five representative
policies: FIFO, priority, priority inheritance, priority ceiling, and preemption.
The first two are naive policies inviting priority inversion; the third is obliga-
tory in RTSJ’s default scheduler; the fourth is an explicit option, and the RTSJ
specification is silent on the fifth.

1) FIFO: This simplistic policy guarantees fairness, but ignores thread
priority.

2) Priority : Here threads waiting for a resource are selected by (fixed) priority
first, and then by FIFO within equal priorities. This policy, as well as FIFO
above, provides no defense against priority inversion.

3) Priority inheritance (PI): This well known policy works by increasing the
priority of the thread possessing a PI resource to equal the maximum priority
of any thread waiting for that resource (its dynamic priority). There are two
perhaps unobvious consequences of this policy:
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1. Since a thread may possess multiple resources, its dynamic priority is based
on the maximum priority of any thread waiting for any of the resources it
possesses, and

2. The priorities involved are of course dynamic priorities, so an attempted
seize of a resource held by a thread waiting for another resource can cause
cascaded priority inheritance effects (and conversely for release’s).

4) Priority ceiling (PC): A PC resource has a fixed priority (its ceiling pri-
ority) which is used to temporarily elevate the priority of any thread possessing
it. If a thread has a dynamic priority greater than the resource’s ceiling priority,
an attempt to seize the resource causes a PriorityCeilingException to be thrown
(the absence of which is an important verification condition).

5) Preemption: A resource managed under this policy does not change a
thread’s priority when seized. A thread seizing a resource of this kind only waits
if the resource is currently held, and the thread’s priority is less than or equal to
the priority of the thread holding the resource. If the thread’s priority is greater
that that of the thread holding the resource, it steals the resource.

Modeling the first four policies is straightforward DES programming. Pre-
emption is a bit trickier, because possession periods (e.g., modeling computa-
tional activity by a thread using a CPU resource) can be prematurely ended when
the resource is stolen by a higher priority thread. This can be implemented by
wrapping such hold method calls in loops that sum actual hold times, and re-
exert hold invocations until the stipulated hold time is attained. All five policy
implementations easily generalize to multiprocessing systems by managing pools
of CPU resources.

6 Applications

We now discuss application of our RTSJ implementation in JPF to two example
programs. The first is a simple model of a multiprogramming operating system
(OS), while the second is a complex resource contention example involving au-
tonomous cars crossing an intersection. The utility of JPF in finding logic and
timing errors in each is illustrated.

6.1 Multiprogramming Operating System

This example models a simple multiprogramming computer system, where jobs
(as RealtimeThread’s) contend for a CPU, which is a resource of one of the five
types discussed in §5. Of these, preemption is the most interesting, because
(i) it guarantees absence of priority inversion, (ii) it is pervasive in modern
operating systems, (iii) its behavior on realistic job mixes defies static analysis,
and consequently (iv) real time OS’s typically do not employ it, despite the
appeal of (i).

A fixed job mix was analyzed using our RTSJ implementation in JFP, using
CPU’s of each of our five resource types. The results are given in Fig. 2. In
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CPU Job1 (6) Job2 (5) Job3 (4) Job4 (3) Time

FIFO 3681 / 72% / 6.0 3780 / 73% / 5.0 3879 / 74% / 4.0 3979 / 74% / 3.0 3979

Priority 1891 / 46% / 6.0 1990 / 49% / 5.0 3880 / 74% / 4.0 3979 / 74% / 3.0 3979

PC (6) 1891 / 46% / 6.0 1990 / 49% / 5.2 3880 / 74% / 4.5 3979 / 74% / 3.7 3979

PI 1891 / 46% / 6.0 1990 / 49% / 5.2 3880 / 74% / 4.0 3979 / 74% / 3.2 3979

Preempt 1004 / 0% / 6.0 2008 / 49% / 5.0 3012 / 66% / 4.0 4015 / 74% / 3.0 4015

Fig. 2. Multiprogramming results, by resource type. The parenthesized number in for
each job indicates its priority. Columns for each job indicate its duration in simulated
milliseconds, followed by its percentage wait time and average priority. Time is the
completion time of the entire job mix, in simulated milliseconds.

this scenario, there are four jobs that are identical in behavior (10 compute /
wait cycles), with identical wait times between cycles. They are all started at
time zero. This simple stress test keeps the CPU 99% busy independent of its
resource type (the simulation ends after the last job terminates). The following
observations can be made of the results in Fig. 2:

– The FIFO CPU gives the most fair service to the four jobs – because it
ignores priority.

– The Priority, Priority Ceiling, and Priority Inheritance CPUs deliver identi-
cal service, because the priority of a job only affects its competitive position
when more than one job is waiting for the CPU, which does not occur in this
simple scenario (an example of priority improving service is given in §6.2).

– Jobs under the Preemptable CPU finish strictly according to priority. How-
ever, the overall completion time is slightly longer, due to the additional
scheduling overhead.

When run under JPF with nondeterminism turned on, there are 4! = 24
choices for activation order at time zero for the four jobs (the statistically rare
case of events scheduled at exactly the same time does not occur after simulation
start). Priority inversion was detected in all 24 paths under FIFO and Priority
CPUs, and on no paths under Priority Ceiling (6), Priority Inheritance, and
Preemptable CPUs.

6.2 Intersection Crossing

The example in §6.1 emphasizes the effect of role of resource types in thread
scheduling. Our second application is a more complex example, illustrating more
advanced features of our RTSJ implementation in JPF. This models autonomous
cars transiting an intersection, where the cars (real time threads) can drive
straight through, turn right, or turn left. Cars are given priorities chosen from
1 to 8.

The intersection is modeled by four sectors (NW, NE, SW, SE), each of
which is a resource. For a car driving north, turning right requires possession
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Sector type Car 0 (5/N/S) Car 1 (2/S/L) Car 2 (8/E/L)

FIFO 33 / 0% 183 / 18% 49 / 21%

Priority 33 / 0% 183 / 18% 49 / 21%

PC(8) 25 / 0% 63 / 40% 45 / 15%

PI 30 / 0% 180 / 16% 46 / 17%

Fig. 3. Intersection results using four sector resource types. (5/N/S) indicates that Car
0 has priority 5, is heading north, and going straight, etc. Car 0 and Car 1 start at
time 0; Car 2 has a start delay of 5 seconds. The figures in each column are completion
time in seconds, and percentage wait time.

of sector SE; driving straight requires SE and NE (granted simultaneously, to
avoid deadlock; SE is released half way through), and turning left involves (i)
seizing SE and NE together; (ii) releasing SE, (iii) seizing NW, (iv) releasing NE
and NW. The net effect is a model of an uncontrolled intersection of two lane
roads, where cars follow the common conventions that a car can drive straight
through if the car on its left (if any) is not driving straight through or turning
left, the car on its right (if any) is not driving either straight, left or right, and
the opposing car (if any) is not turning left.

These rules are complex but deadlock free, which as been confirmed (for
specific scenarios) by exhaustive search using JPF on initial event scheduling
orders. By comparison, deadlocks caused by the naive policy of seizing all of SE,
NE, and NW for a northbound car making a left turn (and correspondingly for
cars heading in other directions) were quickly located by JPF.

Car speed is governed by car priority, in the following manner. The time
required by a car to transit a sector is t = 100 sec/p, where p is the car’s
priority. At the extremes, p = 1 yields a sector transit time of 100 seconds, and
p = 8 yields 12.5 seconds. Experiments were run using four resource types for
sectors: FIFO, priority, priority ceiling 8, and priority inheritance. There are
ready intuitions for each of these cases: FIFO is round robin, priority is fastest
vehicle first, priority ceiling is a minimum sector speed, and priority inheritance
is when one sees an ambulance rapidly approaching, and speeds up accordingly.
The preemption case is physically impossible!

Sample results are shown in Fig. 3. Note that all cars benefit from higher
priority under priority ceiling, and marginally so under priority inheritance.

The utility of run time cost logging under JPF was demonstrated by giving
each car a maximum lifetime (its release deadline in RTSJ’s vocabulary). If the
deadline is set uniformly at 75 seconds, under priority inheritance the RTSJ miss
handler for Car 1 is invoked, but not for Cars 0 or Car 2.

The above analysis can be accomplished under both native Java and JPF,
since it is based solely on simulated time. By contrast, analysis of miss handler
behavior in RTSJ programs can only be exercised under JPF, where a listener
method in our control program records each byte code execution in the subject
program. To demonstrate this capability, an onboard computer was postulated
for each car (its autonomous controller), and a cycle soaker method was invoked
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during passage through each sector (arbitrarily set at 100,000 double divides,
with 100 nanosecond cost per byte code; a total of 1,400,024 DDIV’s are ob-
served in the deterministic case). If a cost limit of 350 milliseconds is imposed,
under priority inheritance Car 0 terminates without handler invocation, Car 2
terminates with cost overrun handler invocation, and Car 1 terminates with both
handlers invoked.

7 Critique of JPF

This application breaks new ground for Java PathFinder in its focus on quan-
tified time as a program correctness issue. Much as been learned about its flex-
ibility in supporting this new and unanticipated correctness dimension, as well
as the limits of our approach that implements RTSJ without making any modi-
fications to JPF.

7.1 Features Not Easily Implemented Under This Approach

In §4 we indicated two areas pose more difficult challenges, which we believe can
only be implemented by JVM modification:

– ScopedMemoryArea’s and NoHeapRealtimeThread’s, which deal with non
garbage collected MemoryArea’s, and

– Asynchronous transfers of control (ATC), e.g., threads that implement the
Interruptible interface and methods that throw AsynchronouslyInterruptedEx-
ception.

While it may be possible in principle to implement at least the first these
features using per-bytecode analysis in a JPF listener method, the overhead of
this approach is likely to be prohibitive.

7.2 Opportunities for Application of Other JPF Features

This project thus far has used only basic Java PathFinder features. Several
advanced features of JPF offer attractive opportunities for increased utility in
verifying RTSJ programs.

Heuristic search: The default program path exploration strategy is depth
first search, using backtracking. Other strategies, such as bounded breadth-first
search, can selectively search longer paths due to elimination of the backtrack
stack [GV04]. Several criteria for preferring paths in RTSJ programs with higher
error potential are evident, such as favoring states with threads whose extrapo-
lated completion time is beyond their stipulated deadlines.

State abstraction: By default JPF saves all previously encountered program
states and performs precise equality checks to detect re-encountered states. This
policy has several consequences, including (i) significant space overhead, and (ii)
inability to recognize states that insignificantly vary from previously seen states.
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In particular, the extremely fine representation of time in RTSJ (to nanosec-
ond precision), exacerbates (ii). To illustrate, consider state abstraction meth-
ods focusing on the core data structure of our system, the scheduled event list.
Opportunities for abstraction here include fuzz on scheduled event times, e.g.,
equality to resolution of say 100 nanoseconds, or even ignoring event times al-
together, and considering two event lists to be equal if they reference the same
real time threads positioned at the same execution point (say, method and byte
code address).

Symbolic execution: JPF interfaces to a constraint system that can solve
equations involving linear inequalities [SKV03]. This presents the possibility of
asserting constraints on scheduled event times.

– For example, it could be asserted that event e1 should run at time t0 + t(e2),
where t(e) is the scheduled time of an event e, and t(e2) is not yet known,
i.e., is symbolic. When t(e2) becomes bound, e1 would be scheduled at a
concrete time.

– Now suppose two scheduled events e1 and e2 have symbolic event times t(e1)
and t(e2), and the event list is otherwise empty. We then have two options to
pursue nondeterministically: (a) e1 runs next, t(e1) ≤ t(e2) is asserted, and
the simulation clock is set (symbolically) to t(e1), or (b) symmetrically, e2

runs next, t(e2) ≤ t(e1) is asserted, and the simulation clock is set to t(e2).

Fault driven automatic test case generation: The execution driven symbolic
constraint refinement technique just sketched can be the basis for finding neces-
sary and sufficient conditions that lead to specific faults [VPK04]. For example,
suppose the real time code is modeling the performance of an aircraft pre-landing
checklist. There have been published accident scenarios where a mandatory air-
craft response, e.g., completion of landing gear deployment, did not occur in time
to ensure the safety of the next step in the checklist, and the pilot under time
pressure (the ground is approaching) inappropriately proceeded [Deg04]. Condi-
tions revealing such flaws in real time checklist procedures might be determined
by symbolic execution in this manner.

8 Performance

We now present performance figures for our RTSJ profile implementation in
JPF. All performance figures are taken from executions in the Eclipse Java IDE
with a heap size of one gigabyte on a Pentium 2 laptop with 768MB of RAM.

Our system can be run in five modes: native Java with deterministic or
pseudo random choice selection, or JPF with deterministic, pseudo random, or
nondeterministic choice selection. We have tested our system in all five modes
on the applications presented in §6. Run time figures for the multiprocessing
operating system example in § 6.1 under deterministic mode are 120ms for native
Java vs. 6,257ms under JPF (the pseudo random mode numbers are analogous).
These absolute numbers are not important; instead, their relative magnitudes are
more informative. Two observations emerge: (a) the native Java implementation
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is quite fast, and (b) the JPF implementation is slower by a factor of about 50
– but it must be remembered that under JPF an interpretive JVM (written in
Java) is being employed, cost logging presents a linear execution time overhead,
and state saving is performed to support exploration of alternative execution
paths (not exploited in the deterministic and pseudo random cases).

CPU type Run time

FIFO 79.4 sec

Priority 80.9 sec

PC(6) 91.6 sec

PI 99.6 sec

Preemptable 106.2 sec

Fig. 4. Run times for the multiprogramming example under JPF nondeterministic
search (backtracking over 24 paths)

To illustrate the cost of JPF state exploration, the CPU example was run
under nondeterminism, exploring the 4! = 24 choices for activation order at time
zero for the four jobs discussed in § 6.1 Results are shown in Fig. 4.

9 Related Work

Model checking of timed automata representations has become very popular
([BLR05]; see [BY04] for a good overview) for the analysis of real time systems.
Our approach differs in that we are analyzing systems with complex transitions
but simple explicit timing information, whereas in the timed automata approach
is typically applied to analyze systems with complex timing, but simple tran-
sitions (e.g., between abstract states in given time intervals). By contrast we
are performing genuine program execution (not abstracted, or symbolic). The
notion of applying timed automata style reasoning is appealing, but represents
a major new line of research, due to the complex transitions in our program
executions, e.g. memory allocation, exception handling, etc.). Our emphasis at
present is checking program safety properties including scheduling errors such
as priority inversion, as well as classic Java errors such as uncaught exceptions
and assertion violations.

It has been reported that more than 3000 people have used the RTSJ refer-
ence implementation or a commercial RTSJ-compliant JVM to create applica-
tion prototypes [Loc04]. Tools are available to benchmark RTSJ implementations
[CS02].

Model checking is a vigorously evolving research area. Bandera [Ban], Bogor
[DHHR05], and the work of Bart Jacobs et al. on JavaCard verification [JMR04]
are examples of model checking applied to Java programs. A closely related
area is run time verification of Java systems [KKLS01]. Capability for dealing
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with time in model checkers has also been evolving rapidly, often through mon-
itoring of event sequences with respect to assertions in linear time logic (LTL)
[Hav]. RTSJ itself is drawing critical and insightful analysis, such as the work
on Ravenscar [Bur, Wel04].

Finally, the advent of the Java Platform Debugger Architecture (JPDA) of-
fers the potential of greatly improved flexibility and performance for our dual
JVM implementation strategy. However, major research issues are presented by
implementing state saving and backtracking under this approach. Moreover, the
challenges of implementing the RTSJ features missing in our system, e.g., mem-
ory varieties and ATC, would still be present — unless an RTSJ compliant JVM
could be obtained that supports JDPA, which seems unlikely.

10 Status and Continuing Work

Our implementation of RTSJ within a DES environment is operational, including
RealtimeThread’s, AsyncEvent’s and AsyncEventHandler’s, cost overrun handlers,
binding of external happenings to events, simulated and real time Clock’s, and
various timers, e.g., OneShotTimer and PeriodicTimer, and PhysicalMemoryArea’s.
API documentation including designation of individual classes and methods not
implemented is publicly available [Lin]. Continuing work includes:

1. Maximizing the RTSJ profile we can implement without JVM modification,
2. Development of a more realistic, calibrated execution cost model, taking into

account effects of garbage collection, JIT compilation, class loading, etc.,
3. Development of more challenging test cases, with assessment of the scalabil-

ity of RTSJ under JPF,
4. Extending JPF’s JVM (written Java) to include the remaining crucial RTSJ

features summarized in § 7.1 (probably using Ravenscar’s profile as a guide),
and

5. Perhaps most importantly, exploiting advanced JPF features to increase the
scale of RTSJ systems that can be analyzed, through techniques as discussed
in § 7.2.
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